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Abstract

A new inverse method is proposed to estimate strain from elliptical objects that have suffered uniform deformation with their matrix. The

present method extends the applicability of strain analysis to the cases where pre-strain fabric has a class of anisotropy. Specifically, a

bivariate normal distribution with the mean at the origin of the Elliott plot is expected as an approximation for the initial fabric. The method is

designed to facilitate error estimation for the optimal strain ellipse. Monte Carlo tests showed that the optimal solution is accurate and

numerically stable. In addition, a confidence region evaluated by the present method is also accurate, provided that the variation of initial

aspect ratios was more than w5 times larger than the deviation of the mean from the origin.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ellipsoidal objects such as deformed pebbles and ooids

have been used to quantify the strain of rocks including the

objects with assuming uniform deformation of the rock and

pre-strain random orientation of the objects (Ramsay,

1967). Extensive studies have been done for this purpose

(e.g. Dunnet, 1969; Matthews et al., 1974; Borradaile 1976;

Shimamoto and Ikeda, 1976; Lisle, 1977b, 1985; De Paor,

1980; Siddans, 1980). Some investigators have studied the

precision of the results assuming a pre-strain random fabric

(Yu and Zheng, 1984; Schultz-Ela, 1990; Hayashi, 1999;

Mulchrone and Meere, 2001). Yet, real sedimentary grains

have preferred orientations (Griffiths, 1967; Paterson and

Yu, 1994), which can lead to significant errors in strain

determination (Seymour and Boulter, 1979). The effect of

pre-strain fabrics was accordingly investigated by several

researchers (Elliott, 1970; Dunnet and Siddans, 1971;

Ribeiro and Possolo, 1978; Wheeler, 1986).

The present article has two purposes: the presentation of

a new inverse method to determine the optimal strain ellipse
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from deformed elliptical objects, and of the method for

evaluating its error. The inverse method assumes a class of

anisotropic initial fabric, and is designed deliberately to

permit error estimation. The method evaluates the precision

of the optimal strain ellipse. Precision is the amount of

detail, and accuracy is the conformity of an estimated value

to the true one (De Pree and Axelrod, 2003). The accuracy

of the method is also examined using Monte Carlo tests with

assumed strain ellipses. It is shown that the error estimation

looses accuracy under some conditions while the optimal

solution is accurate.

The present method assumes a class of pre-strain initial

fabric. Namely, bivariate normal distributions on Elliott’s

(1970) polar plot are expected for the fabric. This

assumption is supported by sedimentological studies

including Potter and Pettijohn (1963), Moss (1963, 1966),

Paterson and Yu (1994) and two examples described in this

study.

The uniform distribution of major axis orientations have

been usually assumed for the object function inversion since

the pioneering work by Ramsay (1967). In this study, the

pre-strain aspect ratios are shown to be as important as

initial random orientations. It is demonstrated that the

inversion becomes robust by including the variations of

initial aspect ratios in the function. The present method

allows a class of initial anisotropy.
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Disregarding the initial aspect ratios has a disadvantage

in evaluating the uncertainty of the strain ellipse. We

assume uniform strain across a rock including the objects. If

all the objects were literally spherical at the undeformed

stage, their present shapes are similar to the strain ellipse

(Cloos, 1947). In this case, we have no uncertainty at all. On

the other hand, if the initial eccentricity is significant, initial

preferred orientations become obviously important. There-

fore, initial aspect ratios should not be ignored in the error

estimation. For our purpose, Elliott’s (1970) plot is useful.
2. Elliott plot

The shape of a grain is approximated by an ellipse with

an aspect ratio, R, and the major axis orientation, f, with

respect to a reference line. The shape and orientation of the

grain are represented by a point on the Elliott plot, the

abscissa and ordinate of which are:

p Z ðlogeRÞcos 2f (1)

q Z ðlogeRÞsin 2f; (2)

respectively. The point is also represented by the position

vector xZ(p,q). Points on the rectangular Cartesian

coordinates O–pq have one-to-one correspondence with

the pairs of the shape and orientation of grains (Fig. 1). The

Elliott plot is the graphical expression of the pairs. The

origin, O, represents circular grains. Equant and elongate

grains are plotted, respectively, near and distant from the

origin. Points on the half-line, pO0 and qZ0, represent

grains whose major axes are parallel to the reference line
Fig. 1. Rectangular Cartesian coordinates, O–pq, to illustrate the

correspondence of points on this coordinate plane with the orientation f

and aspect ratio R of elliptical grains. The reference orientation is parallel to

the p-axis. Each gray ellipse depicts the shape and orientation

corresponding to the coordinates at its center.
(fZ0). Those on the other half of the abscissa (p!0)

represent grains whose major axes are oriented perpendicu-

lar to the line.

The Elliott plot shows not only the shape and orientation

of elliptical objects but also those of the strain ellipse in

question. In what follows, the pre- and post-strain

parameters are distinguished by the subscripts ‘i’ and ‘f’,

respectively (e.g. pi, fi and ff). Those of strain ellipse is

indicated by the subscript ‘s’ (e.g. Rs, fs and ps).
3. Initial fabric

Undeformed initial fabric is important for stain analysis.

However, only a few sedimentologists studied (e.g. Lindsay,

1968) the relationship between the shape and orientation of

sedimentary grains. It has been their convention to describe

the shapes and orientations separately.

Accordingly, the present method for determining strain

ellipse rests upon the observation that elongate grains are

usually fewer than equant ones in undeformed clastic

sediments. Moss (1963, 1966) reported that most sedimen-

tary particles have aspect ratios between 1.3 and 2.0.

Paterson and Yu (1994) described a large variation in the

ratio but generally Ri!3 from sandstone in several

depositional environments. In addition, the orientations of

equant grains are insensitive to paleocurrent directions, but

elongate ones have preferred orientations more often than

equant ones in two-dimensional cuts (Paterson and Yu,

1994).

Accordingly, it is expected that the majority of grains

will plot around the origin of the Elliott plot, and that the

density of points will decrease with distance from the origin.

It is, therefore, expected further that the density of points on

the plot will exhibit a pattern similar to a bivariate (or two-

dimensional) normal distribution.

Because of the scarce description of the relationship

between the orientation and shape of sedimentary grains, I

made the Elliott plots of actual examples. Fig. 2 shows the

plots for sand grains in a microdelta system that was

experimentally formed by Masuda and Suzaki (1984) in a

large flume, 160 m long and 4 m wide. The sand used in the

experiment came originally from a natural river bank in

central Japan, and was composed mainly of quartz and

pyroxene grains with accessories of magnetite and volcanic

rock fragments. The sand was well sorted with a modal

grain size at w0.5 mm. The sand layer had foreset laminae

dipping at 438. The samples show preferred orientations,

consistent with the paleocurrent direction (Masuda and

Suzaki, 1984; Yamaji and Masuda, 2005).

Fig. 2a shows the plot of 1052 grains in a vertical thin

section through the sediment, where horizontal paleocurrent

direction is used for the reference orientation for the angle

f. Fig. 2b is the plot of 840 grains in a horizontal thin

section, where paleocurrent direction was used for the

reference orientation. In both cases, plotted points form a



Fig. 2. The Elliott plots for grains in the vertical (a) and horizontal (b) thin

sections, respectively, through an experimental microdelta system made by

Masuda and Suzaki (1984). Arrows on abscissas indicate the reference

orientations for the plot. Contour lines with intervals of 200 in the right

panels indicate the density of plotted points counted with the moving

window of the area shown by circles. Bold crosses designate the center of

mass of the points.

Fig. 3. Probability density of a bivariate normal distribution. White lines

indicate ellipses for constant probability contours.
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dense cluster, and their center of mass is located in the close

vicinity of the origin. The distance between the center and

the origin was 0.053 and 0.034, respectively, which have the

equivalent difference in aspect ratios of w5 and w3%.

The cluster in Fig. 2b is slightly elongated along the

abscissa, indicating the abundance of grains with the major

axis orientation nearly parallel and perpendicular to the

paleocurrent. This accords with the description by Potter

and Pettijohn (1963, p. 44) who have already pointed out

that particles in the bedding plane often exhibit bimodal

orientations, and the angle between the modes is w908.

Although these are not enough evidence, we assume that

the density of points on the Elliott plot is approximated by a

bivariate normal distribution with the mean at the origin.

The samples were obtained from a microdelta system

formed by unidirectional flow along an experimental flume,

so that screening out grains with low axial ratios (R!1.5)

enhances preferred orientations (Masuda and Suzaki, 1984).

Such a preferred orientation shifts the center of mass away

from the origin of the plot. Despite the strong fabrics of

elongate grains, the overall pattern on the plot can be

approximated by bivariate normal distributions. Grains

deposited in lower energy depositional environments may

satisfy the above assumption better than those in the

microdelta system.
4. Bivariate normal distribution and its constant

probability contours

A bivariate normal distribution has a bell-shaped

probability density function, and is also characterized by

ellipses, which are known as constant probability contours
(Fig. 3). Let n be the number of grains, x(i) the row vector for

the ith point on the Elliott plot. Then

�xZ
1

n
½xð1Þ C/CxðnÞ�

is the mean of the points, and the ellipse is denoted by the

position vector x satisfying

ðxK �xÞSK1ðxK �xÞT Z c2; (3)

where c is an arbitrary constant, S is the covariance matrix

of the points and the superscript T denotes matrix transpose

(Johnson and Wichern, 2002, p. 153). The ijth element of S
is given by

Sij Z
1

nK1

Xn

kZ1

xðkÞi K �xi

� �
xðkÞj K �xj

h i
:

If l1 and l2 are, respectively, the major and minor

eigenvalues of S, the ellipse has the radii c
ffiffiffiffiffi
l1

p
and c

ffiffiffiffiffi
l2

p
.

The eigenvector corresponding to l1 indicates the major

axis orientation. The ellipse with c2Zc2(a) contains (1K
a)!100% of points, where c2(a) is the upper (100a)th

percentile of a chi-square distribution with 2 degrees of

freedom. For example, the 39.35% of points fall in the

ellipse with cZ1 because c2(1K0.3935)Z1. This is the

two-dimensional analogue of the ‘one sigma region’ of a

normal distribution, of which the 68% of points fall within

the range of one standard deviation from its mean.

One of the constant probability contours is defined not

only by Eq. (3) but also by the five parameters a1–a5
(Fig. 4). Table 1 shows those parameters of the two sets of

grains indicated in Fig. 2a and b. The confidence region of

the mean calculated from the points is indicated by an

ellipse with a specific value of c. This is used for error

estimation in Section 7.
5. Transformations on the Elliott plot corresponding to

strain and destrain

We assume uniform strain, meaning that all elliptical



Fig. 4. Five parameters characterizing one of the ellipses in Fig. 3. The

mean radius and aspect ratio are indicated by a1 and a2, respectively. The

major-axis orientation is denoted by the angle a3 from the horizontal axis.

The parameters a4 and a5 indicate the position of peak of the bell-shaped

surface in Fig. 3.
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grains and their matrix suffered the same strain without

annihilation, fission and coalescence. Mathematical

equations for the deformation is obtained by combining

Eqs. (1) and (2) and Ramsay’s (1967, pp. 205–209) formulas

tan 2f0
f Z

2RsðR
2
i K1Þsin 2f0

i

ðR2
i C1ÞðR2

sK1ÞC ðR2
i K1ÞðR2

s C1Þcos 2f0
i

(4)

and

Rf Z
tan 2f0

fð1CR2
i tan

2f0
iÞKR2

s ðtan
2f0

f CR2
i Þ

R2
s tan

2f0
fðtan

2f0
f CR2

i ÞKð1CR2
i tan

2f0
iÞ

� �1=2
(5)

where f0
fZffKfs and f0

iZfiKfs. Ramsay (1967) used

the fs orientation for the reference, but an arbitrary

reference orientation is used here. Therefore, Eqs. (4) and

(5) have f0
f and f

0
i instead of ff and fi. Given a pair (Rs,fs)

or equivalently a point xsZ(ps,qs), we can calculate the final

point xfZ(pf,qf) from the initial one xiZ(pi,qi) through the

following procedure. Firstly, the pair (Ri,fi) is calculated via

the inverses of Eqs. (1) and (2), i.e. fiZtanK1(qi/pi) and

RiZexp½ðp2
i Cq2

i Þ
1=2�. Secondly, Eqs. (4) and (5) yield the

pair (Rf,ff), and finally, xfZ(pf,qf) is obtained via Eqs. (1)

and (2).

The transformation from (pi,fi) to (pf,ff) is a one-to-one

mapping, because we assume homogeneous deformations.

Therefore, the mapping (pi,qi)0(pf,qf) is the inverse of (pf,

qf)0(pi,qi), and vice versa. In what follows, we call them

the forward and backward projection of points on the Elliott

plot. Equations for the backward projection are obtained by

replacing Rs with 1/Rs in Eqs. (4) and (5).

We assume that the density of points xiZ(pi,qi) obeys a

bivariate normal distribution with the maximum frequency

at the origin for grains at undeformed state.
Table 1

The parameters a1–a5 characterizing the ellipses with cZ1 in Eq. (3) for the san

a1 a2 a

Fig. 2a 0.377 1.08

Fig. 2b 0.329 1.13 K
Therefore, it is important to see how the density

distribution is transformed on the plot. Fig. 5 shows

examples for a strain with axial ratio of seven applied in

the orientation fZ0, i.e. RsZ7, fsZ0. Such a large strain is

chosen merely for highlighting the distortion of probability

contours by strain.

When the density distribution of the initial points (pi,qi)

was symmetrical with respect to the origin (Fig. 5a), the

post-strain distribution has oval density contours centered

approximately at the point (ps,qs), where

ps Z ðlogeRsÞcos 2fs Z loge7;

qs Z ðlogeRsÞsin 2fs Z 0

Fig. 5b shows a case where the initial density distribution

is elongated parallel to the X-axis of strain, which is taken

parallel to the abscissa. The elliptical initial pattern

indicates that many initial ellipses were oriented parallel

to the principal strain axes. The resultant distribution is

designated by contour lines with elongated egg-shapes. In

this case, the center of mass of the points after strain

�xf Z
1

n
½xð1Þf C/CxðnÞf � (6)

exists at (loge(7.2),0.0), where n is the number of grains and

xðkÞf is the kth position vector. This is, again, close to the

point (ps,qs). If the initial distribution is elongated along the

ordinate (Fig. 5c), post-strain density distribution has shapes

like half moon or fish scale. The initial density distribution

indicates the abundance of ellipses whose major axes were

rotated from the principal strain axes by 458.

All these examples indicate that the center of mass is a

first approximation for the solution xsZ(ps,qs). As Lisle

(1977a) pointed out, the radial component of the solution

jxsj (namely the logarithmic strain) is closer to the harmonic

mean of the aspect ratios of given ellipses than their

geometric mean, and harmonic mean is always smaller than

geometric mean. The latter corresponds to the radial

component of �xf , so that j �xfj is slightly larger than jxsj.
Fig. 5d shows a case where elongation of the initial

distribution is oblique to the strain axes. The resultant

density distribution shows a pear shape, which is a rotated

and warped version of the ovoid in Fig. 5b. Unlike the

former cases, the resultant distribution is asymmetric with

respect to the line through the origin and the center of mass.

The center is deviated from xs not only in its radial

components but also in the tangential one because of the

asymmetry. Consequently, the center of mass of this case is

the less accurate approximation for the strain than those of
d grains shown in Fig. 2

3 (8) a4 a5 (8)

48.3 0.0525 K52.9

15.6 0.0341 49.2



Fig. 5. Transformation on Elliott plot by pure shear with elongation parallel

to the p-axis by a factor of seven. Unstrained state is shown by a circle or

ellipse in a black square is centered at the origin of the plot for each panel.

The square covers the region K1%p%1 and K1%q%1 on the plot.

Warped cartwheel patterns in gray areas indicate the strained states. A

square is transformed to a gray region by the deformation. (a) Isotropic

initial fabric represented by a cartwheel pattern in a grey squares. The

resultant cartwheel pattern is an oval. (b)–(d) Anisotropic initial fabrics

represented by elongated patterns on Elliott plot, where density of points is

indicated bivariate normal distributions.

A. Yamaji / Journal of Structural Geology 27 (2005) 2030–20422034
the former cases. Such asymmetrical distributions are

sometimes observed in nature reflecting pre-tectonic fabrics

(Lisle, 1985, p. 17).
6. Inverse method to determine optimal strain ellipse
6.1. Theory

It is assumed that the initial density distribution of grains

on the Elliott plot obeys a bivariate normal distribution with

the mean at the origin. Determination of the optimal strain
ellipse from deformed elliptical objects results in an inverse

method under this assumption.

It has been shown in Section 5 that the initial aspect ratio

and orientation of each object are calculated with Eqs. (4)

and (5) from pairs of the post-strain values RðkÞ
f and fðkÞ

f , kZ
1,.,n. Namely, their initial points are functions of the

paired parameters of strain ellipse, Rs and fs, such that

pðkÞ
i Z pðkÞ

i RðkÞ
f ;fðkÞ

f ;Rs;fs

� �
(7)

qðkÞ
i Z qðkÞ

i RðkÞ
f ;fðkÞ

f ;Rs;fs

� �
: (8)

The distribution of the points, which are indicated by the

position vectors xðkÞi Z pðkÞ
i ; qðkÞ

i

� �
, is assumed to obey a

bivariate normal distribution with the mean at the origin.

However, Rs and fs are chosen arbitrarily to calculate those

points, so that they do not necessarily fit the expected

bivariate normality. The overall misfit of the initial points

xð1Þi ;.; xðnÞi to a bivariate normal distribution with the mean

at the origin is evaluated by Hotelling’s T2 statistic (Johnson

and Wichern, 2002, p. 212),

T2 Z n �xiS
K1
i �xTi (9)

where �xi is the mean of the initial points xð1Þi ;.; xðnÞi , and

Si Z
1

nK1

Xn

kZ1

½xðkÞi K �xi�½x
ðkÞ
i K �xi�

T

is their covariance matrix. T2 is calculated from the initial

points that depend on Rs and fs through Eqs. (7) and (8). In

other words, T2 is a function of xs.
We expect the initial points to obey a bivariate normality.

Namely, T2(xs) is the object function of our inverse method.

The smaller the T2 is, the better the distribution fits the

bivariate normality. Therefore, the optimal parameters R̂s

and f̂s of the strain ellipse are determined by minimizing T2

for the n pairs of RðkÞ
f and f

ðkÞ
f . For this optimization, we

employed the downhill simplex method (Press et al., 1993).

The iterative optimization started from the center of mass

�xf , because the center is a first approximation of the optimal

strain (Lisle, 1977a). The inverse method was applied to

artificial and natural data sets.

6.2. Artificial data

The artificial data have 100 elliptical objects. The

solution that should be determined by the inversion has

the values RsZ5 and fsZ0.

For the consideration of error estimation, distinction of

the statistical terms ‘sample’ and ‘population’ is essential.

For example, if 10 samples are taken from the standard

normal distribution, their mean may not equal zero, which is

the true mean of the distribution. The former is the sample

mean, and the latter is the population mean. The former

approaches the latter by increasing number of samples.

Likewise, sample covariance and population covariance

should be distinguished.
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The artificial dataset was generated as follows. First, the

points xð1Þi ;.; xð100Þi representing the initial fabric were

distributed on the O–pq plane with the zero population mean

and a population covariance. The dispersion of the points

shows anisotropy (Fig. 6a), because the covariance matrix

of the points had deviatoric components with significant

magnitudes. Second, the forward projection of the points

with the prescribed parameters RsZ5 and fsZ0 yielded the

points xð1Þf ;.; xð100Þf (Fig. 6b). The inverse method was

applied to the ellipses that were denoted by those post-strain

points.
Fig. 6. (a) The Elliott plots of the points xð1Þi ;.; xð100Þi representing pre-

strain ellipses of an artificial example. Small open circles designate the

ellipses. Thick line encircling the origin illustrates the 95% confidence

region of the mean �xi inferred from the points. Triangles indicate the points

that were projected backward from the post-strain ellipses with the optimal

strain parameters. (b) The Elliott plot of the post-strain ellipses for the

artificial data. Diamond and cross indicate the assumed and optimal strains,

the latter of which was determined from the post-strain ellipses using the

present method. Gray lines indicate the contours of T2 statistic. Thick line

encircling the optimal point shows the 95% confidence region of the

optimal strain. The optimal strain determined by the q-curve method (Lisle,

1977b) is denoted by a star.
Fig. 6b shows the result. The surface defined by the

object function T2(ps,qs) is indicated by contours. The

optimal strain ellipse coincides with the minimum point of

the surface. The optimal strain ellipse has the values R̂sZ
5:3 and f̂sZ0:38, which approximate the assumed values

RsZ5 and fsZ0. Namely, the inverse method was

successful.

The small errors in these parameters came from the

disagreement between the population mean and sample

mean of xð1Þi ;.; xð100Þi . The inversion assumed that their

mean is located at the origin, but the actual sample mean

was displaced from the origin by 0.080 on the Elliott plot.

Solid triangles in Fig. 6a indicate the points that were

projected backward from points xð1Þf ;.; xð100Þf with the

optimal strain. If the inverse method had determined the

correct values, the triangles would have occupied the same

positions with the open circles. The disagreement of the

population and sample means was the origin of the error of

the inverse method. The Euclidean distance of the optimal

point x̂sZ ðp̂s ; q̂s Þ from the assumed one xsZ(ps, qs),

d Z jx̂sKxsj (10)

is a measure of the error, and is 0.067 for this example.
6.3. Natural data

The natural dataset came from the deformed ooids whose

photomicrograph is shown in the textbook by Ramsay and

Huber (1983, p. 83). The natural data were chosen, here, to

show that the present inverse method works well if the

bivariate normality is an approximation for pre-strain fabric.

The optimal strain determined by the present method had

the parameters R̂sZ1:51 and f̂sZK46:98, which are

approximately equal but different from the solution given

by Ramsay and Huber (1983) using their graphical Rf/f

method (Fig. 7). Their solution had the parameters, RsZ1.7

and fsZK428. The difference probably resulted from my

measurement of Rf and ff for each grain on the

photomicrograph. This is demonstrated by the optimal

solution determined from the same dataset through the

q-curve method (Lisle, 1977b). This solution had the

parameters R̂sZ1:55 and f̂sZK47:88, and the correspond-

ing point x̂s fell within the 95% confidence region of the

solution of the present method. The method for determining

the region is explained in Section 7.

The approximate coincidence of the optimal solutions

yielded by those three methods shows that all the methods

worked for this dataset. The data were suitable for the

q-curve and graphical Rf/fmethods. Namely, the points, xðkÞf

(kZ1,.,n), make a cluster that is elongated approximately

parallel to the ray from the origin through the cluster center.

The elongation is depicted by the ellipse that is shown by a

dotted line in Fig. 7a. In addition, the cluster of inferred pre-

strain points is elongated along the strain axis fs. In other



Fig. 7. (a) The Elliott plot of the Rf/f data measured from a

photomicrograph of deformed ooids in Ramsay and Huber (1983). Dotted

line designates the ellipse ð �xfKxÞSK1
f ð �xfKxÞTZ1. Gray lines indicate the

contours of T2 statistic, and bold cross at the minimum point of T2 indicates

the optimal strain. Inset shows the 95% confidence region of the optimal

strain. The solution presented by Ramsay and Huber (1983) is depicted by

an asterisk. The optimal strain determined by the q-curve method is

indicated by a star. (b) The initial points x̂ð1Þi ;.; x̂ðnÞi obtained from the data

in (a) with the optimal strain. Thick line surrounding the origin depicts the

95% confidence region of the mean for the points. Dotted line around the

origin indicates the ellipse defined by xSK1
i xTZ1. Thin lines encompassing

the origin are the contours showing the number density of points at 10 and

50 that were evaluated with the counting circle.
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words, the initial fabric had weak anisotropy, but the

parallelism was favorable to the two methods.

Obviously, the bivariate normality is a first approxi-

mation for the initial points (Fig. 7b). The two contour lines

designated in the subfigure are only approximately similar
to the ellipse xiS
K1
i xTi Z1. Accordingly, the present method

satisfactorily worked. The method does not require strict

bivariate normality but a single cluster with the maximum

density around the cluster center.
7. Error analysis

There are three origins of error in the results of the

present method. First, heterogeneous deformation violates

our basic assumption. Second, the bivariate normality may

not be a good approximation for initial fabric. The mixture

of, e.g. pieces of porous pumice and denser silici-clastic

grains that behave differently in water current may not

exhibit the bivariate normality. Third, even if the normality

holds, the population or sample mean may not coincide with

the origin of the Elliot plot. These factors give rise to

inaccuracy of our optimal solution. The true strain is not

observable, so that the accuracy cannot be determined. We

proceed to estimate the precision rather than accuracy by

assuming the bivariate normality and a homogeneous

deformation.
7.1. Theory

The optimization was done with the assumption that xð1Þi

;.; xðnÞi were occurrences from a bivariate normal

distribution with the population mean at the origin. Let

x̂i
ðkÞ be the initial point of the kth elliptical object that is

inferred with the optimal strain x̂s , then x̂iZ
Pn

k x̂i
ðkÞ=n is

the mean of the initial points. Our inversion adjusts the

mean to the origin, but it should be noted that we do not

obtain the population mean but the sample mean �xi of the
points x̂ð1Þi ;.; x̂ðnÞi . The population mean can be estimated

from the sample mean with uncertainty, which is in turn

propagated to the uncertainty of the optimal strain.

Therefore, we estimate the uncertainty of the optimal strain

from that of the population mean.

The uncertainty of the population mean is depicted by the

confidence region of the population mean. If the mean exists

at a probability of 1Ka in a region, the region is said to be a

100(1Ka)% confidence region. If the points x̂ð1Þi ;.; x̂ðnÞi

obey bivariate normality, this confidence region is indicated

by the ellipse around �xi that is defined by all x such that

nð �xiKxÞŜ
K1
i ð �xiKxÞT%2

nK1

nK2

� 	
F2;nK2ðaÞ (11)

where Ŝi is the sample covariance determined from

x̂ð1Þi ;.; x̂ðnÞi , and F2,nK2(a) is the inverse of the F cumulative

distribution function with 2 and nK2 degrees of freedom

(Johnson and Wichern, 2002, p. 221). For example,

substituting aZ1K0.3935Z0.6065 into this equation, we

obtain a standard (39.35%) confidence region centered at

the point �xi. Given a bivariate normal distribution, the

39.35% confidence region corresponds to the area of ‘one
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standard deviation’ (Kanatani, 1996, p. 123). If l(i) and e(i)

are the ith eigenvalue and eigenvector pair of Ŝi , the major

and minor radii of the confidence ellipse are given by

lðiÞ
2ðnK1Þ

nðnK2Þ
F2;nK2ðaÞ

� �1=2
eðiÞ (12)

where iZ1, 2 and je(i)jZ1.

The closed loop that is defined by the forward projection

of this confidence ellipse can be used as the confidence

region of the optimal point x̂s . The following Monte Carlo

tests demonstrate that this is a good approximation for the

100(1Ka)% confidence region provided that the true �xi is
close to the origin.

The resultant confidence region around the optimal point

has one of the shapes in Fig. 5, namely, they are an ovoid,

semilunar, crescent, or screwed ovoid. Let 3̂ and ĵ be the

radial and tangential components of the optimal point x̂s .
The former component indicates logarithmic strain. The

upper and lower error bounds for the aspect ratio and major

axis orientation of the optimal strain ellipse are defined as

follows. First, the circles that inscribe and circumscribe the

confidence region are drawn to determine D13 and D23

(Fig. 8). The sector that has the apex at the origin with the

smallest apical angle to include the region is also used to

define D1js and D2js. The former pair are transformed into

the lower and upper confidence limits for the optimal aspect

ratio as R̂s =expðD13Þ and R̂s =expðD23Þ. Those of the optimal

major axis orientation f̂s are ðĵsKD1jsÞ=2 and

ðĵsCD2jsÞ=2. If the confidence region includes the origin,

these error bounds become indeterminate.

7.2. Examples

7.2.1. Artificial data

The 95% confidence region of the mean was determined

by Eq. (12) for the artificial data introduced in Section 6.2.

The small ellipse centered at the origin in Fig. 6a shows the

region. The region was transformed forward with the

optimal strain. The oval of which center is indicated by a

cross in Fig. 6b shows the 95% confidence region of the
Fig. 8. Error bounds for the radial and tangential components of the Elliott

plot defined by a confidence region (gray) of the optimal point (cross).
optimal strain x̂s . The diamond in the subfigure depicts the

assumed strain, which is successfully included in the

confidence region. The optimal solution and its 95%

confidence intervals are R̂sZ5:3C0:7
K0:6 and f̂sZ0:268C5:78

K4:58 .

True values RsZ5 and fsZ08 are included in these

intervals.
7.2.2. Natural data

The oval centered by a cross in the inlet of Fig. 7a shows

the 95% confidence region of the optimal strain. The region

was obtained by the forward projection of the 95%

confidence region of �xi, which is shown by the small ellipse

around the origin in Fig. 7b. The optimal strain has the

confidence intervals, R̂sZ1:51G0:06 and f̂sZK46:98C9:1
K9:2 ,

which include the optimal strain determined by the q-curve

method.

Ignoring the few widely scattered points, Ramsay and

Huber (1983, p. 82) used the extent of the cluster on their

Rf/f diagram as the ‘fluctuation’ of the major-axis

orientation of the optimal strain. They presented a value

of about 608 for the fluctuation. The angle that is subtended

by the ellipse ð �xfKxÞSK1
f ð �xfKxÞTZ1 from the origin in

Fig. 7a is about 698, comparable with the fluctuation. Note

that the size of cluster is insensitive to the number of data, n,

but the precision of the optimal strain is improved by

increasing n. Ramsay and Huber(1983) neglected this

statistical effect. In contrast, the confidence region given

by Eq. (12) diminishes in size with increasing n.
8. Monte Carlo tests

In order to verify the confidence region of the optimal

point, two series of Monte Carlo tests were conducted.

Points xð1Þi ;.; xðnÞi were firstly distributed on the Elliott plot

with prescribed population parameters of a1–a5 that

characterize the ellipse defined by Eq. (3) where cZ1,

and secondly the ellipses represented by the points were

strained, and finally the optimal strain ellipse was compared

with the assumed one. The parameter fs was fixed at zero,

while nZ20–100 and RsZ1–20 were treated as random

variables. The parameters a1–a5 were also treated as random

variables. Values for a1 were assigned from a uniform

random sequence between 0 and 1.5. This upper bound was

chosen to have enough capacity for the area of one standard

deviation, because most sedimentary grains have logeRi

between 0.26 and 0.69 (Moss, 1963, 1966).

The first series of the Monte Carlo tests was conducted

with the population mean fixed at the origin, namely, a4Z0.

In the second series, the mean was treated as random

variable obeying another bivariate normal distribution with

the population covariance

0:072 0:00

0:00 0:072

 !
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and with the population mean at the origin. Goodness of the

optimal solution to the correct solution was estimated by the

distance d.
Fig. 9. Scatter plots showing the relationship among n, a1, �d and m39 for the
8.1. Series 1

The population mean of the initial points of the first

series was fixed at the origin. The validity of our error

estimation was tested by the following two quantities, �d and

m39. The former, �d, is defined as the average of ds for 50

data sets with the same combination of the variables, n, Rs,

a1, a2 and a3, where d was calculated using Eq. (10) for each

data set. This average was evaluated with 1000 combi-

nations of the variables. It was demonstrated consequently

that �d is primarily determined by n and a1 (Table 2). It is

natural that increasing n decreases the representative misfit
�d as the negative correlation coefficient indicates (Fig. 9).

Interestingly, �d shows convergence to zero as a1/0.

Namely, the precision of strain ellipse is improved by

decreasing variation of Ri.

For each of the 50 data sets, the optimal point and its

standard confidence region were calculated to see if the

region included the assumed point xs. The quantity m39 is

defined as the ratio of the counts of this inclusion in the 50

trials. For the ideal case, m39 should be equal to 0.39,

because we use the standard confidence region of the

optimal strain x̂s . The value of 39% was chosen instead of

95%, because the latter is close to the upper limit, i.e. 100%.

It was found that m39 has little correlation (correlation

coefficient!0.1) with the random variables except for a1.

Fig. 9c shows m39 versus a1, indicating a linear correlation

with the correlation coefficient of 0.79 and the intercept at

m39Z0.36, which is very close to 39%. Therefore, if the

variation of Ri is small, the present method yields a

satisfactory estimate of the standard confidence region. The

parameter m39 has a tendency to increase with a1, meaning

that our confidence region is somewhat larger than the true

standard confidence region of the optimal point.

These observations demonstrate that our error estimation

works well to determine the optimal strain ellipse, if the

population mean was placed at the origin. The confidence

region is somewhat overestimated in size.

first series of Monte Carlo tests. The parameter a1 represents the variation

of aspect ratios at pre-strain stage, and a1Z0 indicates that all grains were

circular. The regression line is indicated by a light gray line in the third

panel and by the equation m39Z0.21a1C0.36.
8.2. Series 2

The second series of the Monte Carlo tests were

conducted with a4R0: the population mean was not fixed
Table 2

Correlation coefficients for the first and second series of Monte Carlo tests

n Rs a1 a2 a3 a4 a5

Series 1 �d K0.40 0.02 0.85 0.07 K0.02

m39 0.02 0.02 0.79 K0.03 K0.03

Series 2 �d K0.36 0.00 0.45 K0.06 0.03 K0.66 K0.01

m39 K0.15 0.00 0.83 K0.02 0.01 K0.37 K0.01
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at the origin. The displacement of the population mean

violates the assumption of our inverse method, and might

spoil the optimal solution. Accordingly, the aim of this

series of tests was to see the robustness of the method. The

sample values for a4 had a range from 0.0 to 0.35 with the

mode atw0.1. This range is one order of magnitude greater

than the accrual a4 for the sedimentary grains shown in

Fig. 2 and Table 1.

It was seen that the parameters d and �d had correlation

coefficients greater than 0.1 only with n, a1 and a4 (Table 2).

Fig. 10 shows the relationship of �d and m39 with the

parameters a1 and a4. The average accuracy �d had lower

bounds slightly smaller than a4 (Fig. 10b). For the full

ranges of a1 and a4, �d was smaller than w0.3, which

corresponds to a w35% difference in Rs (because e0.3Z
1.35) or an angular difference of (arcsin 0.3)/2z8.78 for fs.

In contrast, the increase of a4 causes a drastic change in

m39 (Fig. 10c and d). While a1/a4 is greater than w6, m39

exhibited a good correlation with a1. In this case, our error

estimation gives a good approximation for the standard

confidence region of the optimal solution. However, m39 fell

significantly from the expected value for a1=a4(4, and m39

approached zero with decreasing a1/a4. The transition

occurred at the ratio a1/a4z5.

The second series of the Monte Carlo tests demonstrates

that the optimal point has an average error �d slightly smaller
Fig. 10. Scatter plots showing the relationship between a1, a4, �d and m39 for the sec

of �d, and that in (c) shows the regression line in Fig. 9. Note the deviation of po
than a4. However, the error estimation becomes unstable for

a1=a4(5, while �d remains small, i.e. the inverse method is

robust for the variations of a4 despite the basic assumption

(a4Z0) of the method, but the error estimation becomes

difficult for larger a4. The grains shown in Fig. 2a and b have

the ratio a1/a4 at 7.2 and 9.6, therefore, the error estimation

would be successful if those grains are strained.
9. Comparison with Rf/f technique

The q-curve method (Lisle, 1977b), a computerized

version of the Rf/f technique, is often employed to evaluate

strain ellipses. However, this method has computational

instability in determining the optimal strain, while the

optimal strain determined by the present method is stable.

The q-curve method assumes a uniform distribution for

fi, and minimizes the object function

c
2ðxsÞZ

Xm

iZ1

½NiðxsÞKn=m�2

n=m
(13)

for obtaining the optimal xs, where Ni is the number of

elliptical objects whose initial orientations were in the ith

bin, and m is the number of bins with the configurations

suggested by Lisle (1985, p. 19). Ni is a function of xs. c
2(xs)
ond series of Monte Carlo tests. Dashed line in (b) delineates the lower limit

ints from the regression line by the decreasing ratio of a1/a4.
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is the chi-square statistic to evaluate how the initial

orientations were uniform (Lisle, 1977b).

The method was applied to the artificial data xð1Þf ;.;

xð100Þf that were generated from an isotropic initial fabric.

Fig. 11a shows the optimal point and the contours of c2(xs).

Owing to the uniform initial fabric, the method was

successful in yielding the optimal point close to the
Fig. 11. (a) Elliott plot of artificial data with pre-strain isotropic fabric. Gray

contours show the c2 statistic, the object function of the q-curve method

(Lisle, 1977b) applied to the data. Diamond designates the assumed strain

with which the artificial data were generated. (b) Contours showing the c2

statistic near the point (bold asterisk) where the function has the minimum.

(c) Filled circles indicate the optimal solutions obtained by the jackknife

method for the q-curve method applied to the artificial data. The ellipse

centered by a bold cross shows the standard confidence region of the

optimal point determined by the present method. Asterisk shows the

optimal point for the q-curve method applied to the whole data.
assumed one (Fig. 11b), though the optimal point obtained

by the present method was closer to the assumed one.

Note that the contours in Fig. 11 are not smooth,

indicating the roughness of the surface c2(ps,qs). There are

local minima and maxima around the optimal point

(Fig. 11). The roughness makes the search for the optimal

point difficult. The optimal point indicated by an asterisk in

Fig. 11b was found by the downhill simplex method with

the initial point that has the minimum c2 statistic among the

computational grid points with intervals of 0.01 on the

Elliott plot.

The roughness also results in computational instability of

the optimal point. The instability was demonstrated by the

jackknife method (Efron, 1982). Namely, the jth datum was

left out to make (nK1) resampled data, where nZ100 for

this case and jZ1,., or n. The optimal strain was

determined by the q-curve method for each resampled

dataset. The resampling simulated sampling bias. The

optimal points for the datasets were scattered (Fig. 11c),

although only one datum was removed from the original

dataset. In contrast, the present method showed no such

instability. From the resampled datasets, the present method

yielded the optimal solutions, which were plotted almost at

the same point in Fig. 11c.

The instability is inevitable for strain inversion that

assumes initial uniform orientations but does not incorpor-

ate initial aspect ratios in its object function. Suppose that

the trial point xs moves over a data point xf from point A to

D in Fig. 12. The corresponding initial point moves from A 0

to D 0 near the origin, and the initial orientation fi changes

from A 00 to D 00. Although the movement of xi is continuous

from B 0 to C 0, the orientation jumps from B 00 to C 00. This

jump gives rise to discontinuous changes in Ni(xs), and

results in the roughness of the object function. Since the

optimal point exits in the vicinity of the center of mass �xf
(Lisle, 1977a), the roughness of the surface makes local

minima around the optimal point.

Moriyama and Wallis (2002) attempted to evaluate the
Fig. 12. Schematic picture showing origin of the instability of the q-curve

method. Solid diamond indicates the data point xf. Open circles A–D depict

trial points for xs. The back projection of xf with the trial points results in

the initial points depicted by solid circles A 0–D 0, the tangential coordinates

of which are indicated by diamonds A 00–D 00 on the unit circle. The

coordinate jumps from B 00 to C 00 during the passage of xs near xf.
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confidence region of the optimal strain in the range where c2

was smaller than a threshold. However, this is not

necessarily a simply connected region due to the roughness,

even if the uniform distribution of initial orientations is

valid. Consequently, error estimation is not straightforward

for the conventional Rf/f technique that assumes only a

uniform initial orientation. The instability is removed by

taking not only those orientations but also initial aspect

ratios in object function. For this reason, the inverse method

proposed in this article has the smooth object function

T2(xs), and can determine an optimal strain without such

instability, even if the mean �xi of initial fabric was displaced
from the origin (Section 8.2).
10. Discussion

It is obvious that the limitation of the present method

comes from the assumption that pre-strain fabric is

characterized by a bivariate normal distribution with the

mean at the origin of the Elliott plot. Although this specific

distribution is expected, the present method can evaluate

strain and its error from Rf/f data that were not suitable for

existing methods.

Unfortunately, we have not got enough examples to test

the validity of the assumption for sedimentary grains,

because there are only a small number of sedimentological

studies describing the relationship between the shape and

orientation of grains (e.g. Lindsay, 1968; Seymour and

Boulter, 1979; Paterson and Yu, 1994). Recently, Yamaji

and Masuda (2005) pointed out the significance of this

relationship in the sedimentological community.

The bivariate normal distribution is expected as an

approximation, as exemplified by the natural data with a

weak initial anisotropy in Figs. 2 and 7. Grains that literally

have such a distribution are characterized by the bimodal

major-axis orientations with intervals of w908. Sedimen-

tary particles have this tendency upon bedding planes

(Potter and Pettijohn. 1963, p. 44). Undeformed clastic

grains have 1/Ri obeying normal distributions (Griffiths,

1967). It should be noted that this is compatible with our

bivariate normality. The former concerns a one-dimensional

frequency distribution, and the latter is a two-dimensional

distribution. Table 3 shows that the grains in Fig. 2 have

basic statistics consistent with the normal distribution of

1/Ri given by Griffiths (1967). Yet, extensive studies on the
Table 3

Basic statistics of 1/Ri for clastic grains

Mean Standard deviatio

Average (min/max) 0.685 (0.629/0.729) 0.150 (0.138/0.17

Fig. 2a 0.645 0.152

Fig. 2b 0.678 0.139

Values in the upper two rows are after Griffiths (1967, p. 123) who tabulates the

standard deviation, skewness and kurtosis for the quartz grains are listed in the row

range of each statistic. Values listed in the lower two rows show the values for th
relationship of aspect ratios and orientations is obviously

needed to improve strain analysis.

The bivariate normality is the simplest assumption for

two-dimensional parametric distribution of points. There is

no way to evaluate strain from Rf/f data without assuming

some initial fabric. It was demonstrated in Section 9 that our

assumption is better than uniform initial orientations. The

latter has been the most popular assumption, but such a

random fabric is unlikely for actual sedimentary grains

(Griffiths, 1967). It was, therefore, recommended to test this

assumption using the symmetric or asymmetric distribution

of data points on the Rf/f diagram before determining the

optimal strain ellipse (Lisle, 1985). If the distribution has an

asymmetric tail like that in Fig. 5d, the points making up the

tail are left out of analysis to cope with the initial anisotropy.

A few previous researchers (e.g. Elliott, 1970) have taken

not only pre-strain orientations but also aspect ratios.

Among them, Wheeler (1984) assumed a pre-strain fabric

similar to an isotropic bivariate normal distribution just like

the case of Fig. 5a. A recent method by Mulchrone et al.

(2003) assumes the uniform orientations and pre-strain axial

ratios independent of the orientations. Consequently, the

distribution of initial points that they expect has a rotational

symmetry about the origin of the Elliott plot, including the

case of Fig. 5a and an annular peak around the origin. If the

initial fabric has a pattern similar to Fig. 5a, these two

methods and the present one will determine largely the same

optimal strains. Mulchrone et al. (2003) attempted to extend

the strain inversion of Rf/f data to the cases of arbitrary

distribution of initial aspect ratios. In contrast, the present

method takes anisotropic initial fabric into account.

The present method can stably determine the optimal

strain. In addition, the present assumption allows us to

evaluate the confidence region of the optimal strain, though

the evaluation becomes unstable for grains with a small

a1/a4 ratio that indicates a strong initial fabric. However, the

determination of the optimal strain is numerically stable for

such a dataset. If grains have such an initial anisotropy, Rf/f

data are not enough for strain analysis (De Paor, 1980).
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